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Background 

Watershed hydrologic models (i.e. watershed models) can be used to simulate the long-

term effects of climate and land management practices on water and nonpoint source pollutant 

loads at large spatial scales. Such models are designed using computer programs to simulate 

watershed hydrologic processes using numerous physics-based equations (Borah and Bera, 

2004). Watershed models are useful tools for generating science-based hydrologic information 

with relatively small investments of resources (i.e. raw materials, labor, time and money) in 

comparison to long-term direct-measurement hydrologic monitoring efforts (Borah et al., 2006). 

While there are several watershed hydrologic models to choose from, the Soil and Water 

Assessment Tool (SWAT) is an internationally accepted choice for many applications such as 

pollutant loading estimates, receiving water quality, source load allocation determinations, and 

conservation practice efficacy (Borah et al., 2006; Gassman et al., 2007). 

The soil water mass balance (Figure 1) in the SWAT model drives the loading and 

routing of water and pollutants across multiple hydrologic pathways (Figure 2) in the SWAT 

model. The model is equipped with multiple routines that can be lumped into two main phases: 

1) the land phase and 2) the routing phase. During the land phase, water inputs (e.g. precipitation 

and irrigation) transport water and pollutant loads to receiving waters. During the routing phase, 

those pollutants are routed through the stream network to the watershed outlet. 

The SWAT model is equipped to estimate climate and land use influences on hydrologic, 

sediment, chemical, and bacteria loads in ungauged watersheds with forested, agricultural, and 

urban land uses (Srinivasan et al., 2010). However, to improve model confidence, the typical 

SWAT project involves model calibration and validation using observed data collected in the 

watershed of interest (Gassman et al., 2007). Arnold et al., (2012) outlined methods for 
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calibrating the SWAT model (i.e. adjusting model parameters to improve the accuracy of 

modeling results). 

The various strengths and weaknesses of the SWAT model have been extensively 

evaluated through the peer-review process [e.g. literature reviews by Borah et al., (2006) and 

Gassman et al., (2007)]. For example, the SWAT model is not as easy to use as more simplified 

models that rely on fewer equations to estimate water and pollutant loading (Borah et al., 2006). 

The model is also more labor and data intensive compared to more simplified models (Borah et 

al., 2006). The input data and work flow required in SWAT are quite extensive (Figure 3). 

However, SWAT is extremely robust in that hundreds of complex equations are computed in a 

matter of seconds accounting for differences in meteorological and hydrologic factors, 

physiographical watershed conditions, and human activity. Additionally, the SWAT model was 

designed to offer extensive analysis tools that can account for a broad array of management 

operations (e.g. irrigation, planting, grazing, fertilization, pesticide application, and tillage 

operations). For more information, a complete description of the SWAT model can be found in 

Soil and Water Assessment Tool Theoretical Documentation published by Neitsch et al., (2005).  

 

Purpose of the current work 

The purpose of this modeling effort was to use SWAT to simulate long-term natural (e.g. 

climate) and human (e.g. land use) impacts to flow and Escherichia coli (E. coli) loading in 

Little Sac Watershed (LSW). Pasture (46%), forested (39%), and urban (10%) land uses 

dominate LSW which has a drainage area of approximately 743 km2 and elevations that range 

from approximately 462 to 264 meters above mean seal level. Dominant soils in the region are 

characterized by an extremely gravelly reddish brown silty clay horizon from roughly 0.5 to 1.5 
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meters deep formed from residuum weathered from underlying cherty limestone or cherty 

dolomite. The watershed is karst and the recharge areas are unknown (Baffaut, 2006). The main 

channel, Little Sac River (approximately 66 km in length), is spring fed and much of its flow 

also comes from a wastewater treatment plant (design average daily flow: 2.57 x 104 m3) 

(Baffaut, 2006). This modeling effort supports a broader watershed planning project being 

conducted by the Watershed Committee of the Ozarks (WCO), and funded by Missouri 

Department of Natural Resources (MDNR) in response to MDNR regulatory requirement for 

watershed planning to be evaluated and updated every five years in Missouri watersheds. 

A TDML was completed during 2006, and a LSW management plan was completed 

during 2010. A 43 km segment of Little Sac River has been listed as impaired for Whole Body 

Contact Recreation (swimming) due to excessive fecal coliform from “point and nonpoint 

sources” since 2006. Currently, the WCO is leading efforts to update the watershed management 

plan in LSW. The management focus has shifted from fecal coliform to E. coli bacteria. E. coli 

are commonly measured in colony forming units in 100 ml of water (cfu 100 ml-1) to estimate 

the number of bacteria in a water sample.  

Little Sac Watershed was studied previously. Baffaut (2006) calibrated and validated a 

SWAT model to simulate flow and fecal coliform bacteria in LSW during 2006. Previous 

modeling results needed to be updated for present watershed conditions, and to evaluate Best 

Management Practices (BMPs) for the updated watershed management plan. The methods used 

by Baffaut (2006) were extensively evaluated through the peer-review process, and were 

therefore useful in this study. Additionally, results from Baffaut (2006) were a valuable source of 

baseline information in this study.  
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2.0 Methods 

2.1 SWAT project setup 

SWAT2015 Rev. 637 was chosen for the present investigation because it was the most 

recent version of SWAT at the time of this study. A 30 m digital elevation model was used as 

input data to delineate sub-basins in ArcSWAT. Sub-basins were delineated as close as possible 

to each HUC 12 sub-basin level. There are six HUC 12 sub-basins in LSW. Additionally, sub-

basins were delineated at the end of each tributary to isolate individual reaches. A total of 24 

sub-basins were delineated in this LSW model. Thus, LSW was modeled in greater detail than 

the HUC 12 level (Figure 4). A U.S. Geological Survey (USGS) gaging site (site #06918740) 

located near the outlet of LSW (i.e. outlet of sub-basin 7) (Figure 4) on Little Sac River near 

Morrisville, MO was selected as a sub-basin outlet for flow calibration purposes. Two reservoirs 

where included as inputs in the model [Fellows Lake (sub-basin 18) and McDaniel Lake (sub-

basin 19)] (Figure 4).  

The most recent soils and land use data were used as spatial inputs into the LSW SWAT 

model including the Soil Survey Geographic Database (SSURGO) and the 2011 National Land 

Cover Data sets (Table 1). Following Baffaut (2006), hay land use rasters were split using 

ArcGIS tools to create pasture, fescue, and winter pasture areas appropriate for simulating 

grazing rotations in LSW. A small portion of hay land cover was also split into septic fields to 

simulate residential rural area wastewater treatment (Baffaut, 2006). Hydrologic Response Units 

(HRUs) are spatially lumped areas with unique combinations of slope, soils, and land use in each 

sub-basin created for calculation of water and pollutant yields from lumped land areas in SWAT. 

Thresholds for land use, soil were set to 10, and 25%, respectively, to reduce the final number of 

HRUs and ultimately avoid problems with excessive computational complexity (Arnold et al., 
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2012). Additionally, the single slope option was used to minimize the final number of HRUs. 

Ultimately, a grand total of 181 HRUs were used in this LSW SWAT model. 

 

2.2 Climate input data 

Climate input data of relative humidity, wind speed, and solar radiation were simulated 

using the SWAT model weather generator as those historical climate data were not available 

during the entire study period (1981 to 2015). Air temperature data were sourced from the 

National Climatic Data Center (https://www.ncdc.noaa.gov/data-access/land-based-station-data) 

sensed at the Springfield-Branson National Airport (Table 1). Climate gage density in the region 

was deemed insufficient for adequate representation of the spatial variability of precipitation in 

LSW considering there was only one monitoring location in the region (Springfield-Branson 

National Airport) with rainfall data during the study period (1991-2015). Mean areal 

precipitation data were needed to capture the spatial heterogeneity of rainfall between sub-basins 

in LSW. Thus, the Parameter-elevation Regression on Independent Slopes Model (PRISM) was 

used to capture rainfall variability between sub-basins.  

The PRISM data show precipitation over an area at a 4 km spatial resolution as opposed 

to point gage data that represent rainfall amounts at a point location. The efficacy for using 

PRISM rainfall data to generate accurate SWAT model simulations of flow was validated during 

the study period in central Missouri where climate is similar to Little Sac Watershed (Zeiger and 

Hubbart, 2017). Those PRISM data were sourced from an Oregon State University website 

(http://www.prism.oregonstate.edu/). Thirty-five years (1981-2016) of daily precipitation data 

grids (4 km raster images) corresponding to the ‘AN81d’ data set were downloaded in bulk using 

‘wget’ (a software tool for downloading bulk data). Models were created in ArcGIS using 

https://www.ncdc.noaa.gov/data-access/land-based-station-data


 
 

7 
 

‘model builder’ to extract precipitation data from each surface raster file to each sub-basin in 

LSW. Ultimately, each sub-basin was attributed a unique time series of daily precipitation data. 

Those precipitation data were input into the LSW SWAT model. 

 

2.3 Point source inputs, springs and reservoirs 

 There was one relatively large wastewater treatment plant that discharged effluent into 

Little Sac River at the time of this study (design average daily flow: 2.57 x 104 m3), and three 

smaller facilities with design average daily flows ranging from 32 to 305 m3. Northwest 

Wastewater Treatment plant (NWWTP) was the only treatment plant added as a point source of 

E. coli in this LSW model. Daily flow, sediment, and nutrient loadings from the NWWTP were 

uploaded into the SWAT model (Table 2). Baffaut and Benson (2009) attributed 70 cfu 100 ml-1 

of fecal coliform from the NWWTP in LSW. In the current work, fecal coliform was converted 

to E. coli using a 0.63 E. coli / Fecal Coliform ratio as per methods proposed by Hathaway 

(2014) in agreement with Environmental Protection Agency (EPA) bacteria water quality 

standards. The resulting E. coli concentration was 44.1 cfu 100 ml-1 in effluent from the 

NWWTP. 

Springs were not simulated in SWAT, but were added as point sources following 

methods proposed by Baffaut (2006). The southern area of LSW has several springs with flow 

rates that range from < 0.1 to 43,215 m3 day-1 (Table 3). Spring locations and flow rates were 

obtained from MDNR Geological Survey through Missouri Spatial Data Information Systems 

(MSDIS). While the relative volume of spring flow for the springs has been generally quantified 

over long time periods, spring flow can vary substantially at a daily time interval following large 

rainfall events. Capturing that daily variation in spring flow was beneficial for accurate estimates 
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of daily average stream flow in this work. To estimate daily spring flow, base flow was separated 

from observed total stream flow at a USGS gage located in Morrisville toward the watershed 

outlet. The Boughton two-parameter algorithm for flow separation was used to separate base 

flow from total stream flow (Chapman, 1999): 

 

𝑄𝑏𝑎𝑠𝑒(𝑖) =
𝑘

1+𝐶
𝑄𝑏𝑎𝑠𝑒(𝑖 − 1) +

𝐶

1+𝐶
𝑄𝑡𝑜𝑡𝑎𝑙(𝑖)    (1) 

 

such that 

 

𝑄𝑏𝑎𝑠𝑒(𝑖) ≤ 𝑞(𝑖)       (2) 

 

and 

 

𝑄𝑡𝑜𝑡𝑎𝑙 −𝑄𝑏𝑎𝑠𝑒 = 𝑄𝑒𝑣𝑒𝑛𝑡      (3) 

 

where Qbase was base flow, i was time interval, k was a recession constant during periods of no 

runoff, C was a second recession coefficient, Qtotal was total stream flow, and Qevent was event 

flow. The resulting daily timeseries baseflow was distributed among sub-basins according to the 

observed relative spring flow contributions in each sub-basin (Appendix A1). Water quality data 

[nitrogen (N), phosphorus (P), and E. coli] associated with each spring were derived from Adopt-

A-Spring efforts in LSW. The E. coli values attributed to each spring in the model were the 90th 

percentile of E. coli values from the Adopt-A-Spring data set to account for sampling bias to low 

flows (Table 3).  

Two reservoirs that were accounted for in this SWAT model application were located at 

Fellows Lake (sub-basin 18) and McDaniel Lake (sub-basin 19). Information was sourced from 

Baffaut (2006) regarding the dimensions and parameters important in defining each reservoir in 

LSW. Additionally, data showing recent monthly average consumptive water use (i.e. net 

monthly withdraws) from those reservoirs was obtained from Springfield City Utilities. Net 
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monthly withdraws data were input in the reservoir data tab of ArcSWAT. Information regarding 

the monthly average consumptive water use of each reservoir is located in Table 4. 

Currently, SWAT2015 simulates the effects of reservoirs on water, sediment, and nutrient 

yields. However, the module designed to simulate bacteria routing through reservoirs is not 

operational in the most current version of SWAT. As a result, initial bacteria simulations showed 

annual average E. coli export was about 600 cfu 100 ml-1 greater than observed data collected by 

Springfield City Utilities at Fellows Lake Dam during the study period. Thus, there was a need to 

reduce (through model calibration) simulated bacteria export from those sub-basins to better 

match those observed data. The following equation used in the current work to simulate reservoir 

trapping efficiency of bacteria in SWAT follows (Parajuli et al., 2008): 

𝑡𝑟𝑎𝑝𝑒𝑓,𝑏𝑎𝑐𝑡 =
11.8+4.3∗𝑦

100
    (4) 

where trapef,bact is the fraction of the bacteria loading trapped by the reservoir, and y is a 

calibration coefficient between 0 and 30. 

 

2.4 Nonpoint sources  

 Nonpoint sources of E. coli (13,000 cfu 100 ml-1) were added to urban storm water runoff 

in urban HRUs. The value of 13,000 cfu 100 ml-1 was derived from a U.S. Geological Survey 

(USGS) publication that showed E. coli counts in water quality samples (n = 21) collected during 

periods of stormflow in Springfield, MO (Richards and Johnson, 2002). Nonpoint sources of E. 

coli were also added to cattle manure (7.075 x 106) as per methods used by Baffaut (2006) in 

LSW. Additionally, E. coli were attributed to septage which was applied daily as a continuous 

fertilizer (i.e. year round) on septic HRUs in an amount that reflected the average effluent 

production per household as per methods used by Baffaut and Benson (2009). 
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2.5 Management operations 

 Pasture and urban management operations were sourced from Baffaut (2006). Tall fescue 

over-seeded with red clover was planted in hay fields and good/poor pastures. Tall fescue was 

planted in urban HRUs. Cattle were rotated between hay fieldsand good/poor pastures. Cattle 

were turned out for less time on hay fields which were reserved for seasonal hay cutting (Table 

5). Cattle over-wintered in wooded winter pastures. Details regarding fertilizer schedules, hay 

cutting schedules, and grazing schedules in rural sub-basins were appropriate for the region 

(Baffaut, 2006) (Table 5). Cattle densities, manure, biomass consumed / trampled values were 

also appropriate for the region and sourced from Baffaut (2006). Details regarding fertilizer 

schedules, lawn mowing schedules, and street sweeping schedules in urban HRUs were also 

appropriate for the region (Baffaut, 2006) (Table 5).  

 

2.6 SWAT model calibration and validation 

The SWAT model was manually calibrated and validated to observed stream flow at a 

daily time step using a split-time method (Gassman et al., 2007) and auto-calibration software 

SWAT-cup (Arnold et al., 2012). Several years (1981-1991) were used to “warm-up” the model 

(e.g. wet up soils) as per recommendations from the literature (Arnold et al., 2012). The 

calibration (1991-2009) and validation (2010-2015) periods included wet, average, and dry years 

as per recommendations from Arnold et al., (2012). The SWAT model was calibrated to 

observed daily flow at the USGS Morrisville gage where flow has been monitored since 

September 1987. Calibration parameters were set to reflect physically realistic values for the 

watershed as per SWAT model calibration methods proposed by Arnold et al., (2012). 
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Moriasi et al., (2007) suggested the use of Nash-Sutcliffe efficiency (NSE), ratio of root 

mean square error to the standard deviation of observed data (RSR), and percent bias (PBIAS) to 

assess model performance. Model performance ratings for each of the three aforementioned 

model evaluation criteria at a monthly time step are provided in Table 6. Nash-Sutcliffe 

efficiency tests were used to quantify the variance of observed versus simulated data relative to a 

1:1 best fit line; NSE values range between ∞ and one, where an NSE value of one is a perfect 

simulation. Any NSE value greater or equal to zero indicates that the simulated value estimated 

the constituent of concern better than the mean observed value. NSE values were calculated 

using the following equation: 

𝑁𝑆𝐸 = 1 − [
∑ (𝑌𝑖

𝑜𝑏𝑠−𝑌𝑖
𝑠𝑖𝑚)2𝑛

𝑖=1

∑ (𝑌𝑖
𝑜𝑏𝑠−𝑌𝑖

𝑚𝑒𝑎𝑛)2𝑛
𝑖=1

]     (5)  

where Yi
obs is the ith observed datum for the variable being estimated. Yi

sim is the ith simulated 

datum for the variable being estimated, Yi
mean is the mean of observed data for the variable being 

estimated, and n is the total number of observations.  

Ratio of root mean square error to the standard deviation is an error index statistic. RSR 

values of zero equal a perfect simulation. Any RSR value less than 0.50 indicates an acceptable 

simulation. RSR values were calculated using the following equation: 

𝑅𝑆𝑅 = [
√∑ (𝑌𝑖

𝑜𝑏𝑠−𝑌𝑖
𝑠𝑖𝑚)2𝑛

𝑖=1

√∑ (𝑌𝑖
𝑜𝑏𝑠−𝑌𝑖

𝑚𝑒𝑎𝑛)2𝑛
𝑖=1

]      (6)  

Percent bias tests were used to indicate the average tendency of simulated data to be 

greater than or less than the observed data. Any negative PBIAS value indicated the simulated 

data were greater than the observed data on average. Conversely, any positive PBIAS value 

indicated the simulate data were less than the observed data on average. A PBIAS value of zero 

is a perfect simulation. PBIAS values can be calculated using the following equation: 
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  𝑃𝐵𝐼𝐴𝑆 = [
∑ (𝑌𝑖

𝑜𝑏𝑠−𝑌𝑖
𝑠𝑖𝑚)∗100𝑛

𝑖=1

∑ (𝑌𝑖
𝑜𝑏𝑠)𝑛

𝑖=1

]     (7)  

 

Once the model was deemed adequately calibrated to flow, the resulting best fit 

parameters were input back into SWAT. General basin parameters specific to bacteria and septic 

tanks were sourced from the literature (Baffuat, 2006; Baffaut and Benson, 2009). Then, SWAT 

was run to generate model output for assessment of sediment, nutrients, plant biomass, and 

bacteria against observed data collected in LSW. Minor manual calibration adjustments were 

made to parameters as needed until final SWAT model estimates of sediment, nutrients, bacteria, 

and plant biomass were deemed adequate for the region. 

 

2.7 BMP scenario modeling 

Scenario modeling efforts were completed to test the effects of selected BMPs on SWAT 

simulated bacteria loading (Table 7). A total of four BMP scenarios were completed including: 

1) practices for conservation of soil health in pasture areas, 2) planting vegetative stream buffers 

in pasture areas, 3) planting vegetative stream buffers in urban areas, and 4) combination of all 

aforementioned BMPs. To simulate the influence of soil conservation practices on bacteria 

loading in pasture areas of LSW (i.e. BMP scenario #1), Soil Conservation Service Curve 

Numbers (SCS-CN) were reduced by a value of 3 in all hay and pasture related HRUs. 

Reduction of SCS-CN was performed to simulate MDNR suggested grazing management 

practices designed to effectively reduce runoff and soil erosion from pasture areas 

(https://dnr.mo.gov/env/swcp/service/grazingmanagement.htm). A SCS-CN reduction by a value 

of 3 was to indicate improvement of soil conditions from “fair” to “good” in pasture HRUs. To 

simulate the effects of vegetative buffers in pasture areas (BMP scenario #2), “vegetative filter 

https://dnr.mo.gov/env/swcp/service/grazingmanagement.htm
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strips” (VFS) with a width of 15 m were added to all hay and pasture related HRUs. To simulate 

the effects of vegetative buffers in urban areas (BMP scenario #3), VFS with a width of 10 m 

were added to all urban HRUs. To simulate the effects of all selected BMPs at once (BMP 

scenario #4), all aforementioned BMPs were included in the SWAT model. Load-weighted 

percent reductions of E. coli were quantified for each BMP separately and all BMPs. Finally, 

results were exported to tables and figure to provide planners with science-based information 

regarding the influence of BMPs on water quality in LSW. 

The VFSs trap storm water runoff, sediment, and chemicals (e.g. nutrients, pesticides) 

making this BMP an attractive choice for reduction of excessive water and pollutant loading 

leading to overall water quality improvement (Parajuli et al., 2008). Generally, as the width of 

the vegetative buffer increases, storm water runoff and pollutant load inputs to the stream 

decrease (Parajuli et al., 2008). The equation used to estimate vegetative filter strip trapping 

efficiency of bacteria in SWAT follows (Parajuli et al., 2008): 

𝑡𝑟𝑎𝑝𝑒𝑓,𝑏𝑎𝑐𝑡 =
11.8+4.3𝑤𝑖𝑑𝑡ℎ𝑠𝑡𝑟𝑖𝑝

100
    (8) 

where trapef,bact is the fraction of the bacteria loading trapped by the vegetative filter strip, and 

widthfiltstrip is the width of the vegetative filter strip (m). Equation 8 is quite powerful depending 

on buffer width. Thus, as a general rule, the buffer width considered should not exceed 75% 

trapping efficiency (Parajuli et al., 2008).  

 

3.0 Results and Discussion 

3.1 Hydroclimate during the study 

 Hydroclimate during the study contained wet, average, and dry years in LSW (Table 8). 

A 25-year climate record showed total annual precipitation ranged from 869 to 1,620 mm with 
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an average of 1,150 mm during the modeling period (1991-2015). Air temperature ranged from -

23.3 to 42.2 °C with an average of 13.7 °C. Variability of annual precipitation translated to a 

variable streamflow regime in LSW. Observed streamflow ranged from 0.085 to 591 m3 s-1. 

Thus, the study period captured the variability in climate as suggested by Arnold et al. (2012). In 

fact, both calibration and validation periods contained wet, average and dry years which is 

beneficial for proper calibration of SWAT.  

 

3.2 SWAT model performance and assessment 

 After model calibration to streamflow at the USGS Morrisville gage located in sub-basin 

7 of LSW, model evaluation results showed the model was calibrated to a model performance 

rating of “satisfactory” for streamflow at yearly and monthly timesteps according to guidelines 

published by Moriasi et al., (2007). Model performance was slightly less accurate during the 

validation period and at a daily time step which is quite common (Table 9). The ‘very good’ 

percent bias (PBIAS) values (PBAIS +/- 10 %) coupled to lower Nash-Sutcliffe efficiency 

(NSE), ratio of root mean square error to the standard deviation of observed data (RSR), and 

coefficient of determination (R2) values were, at least in part, due to the fact that the model was 

calibrated to PBIAS only. The autocalibration software used in the current work (i.e. SWAT-

cup) was not designed to account for multiple statistics when dialing in calibration parameters to 

lock on to flow targets. The PBIAS values within +/- 3 % during calibration were ideal. In fact, 

simulated mean streamflow (6.4 m3 s-1) equaled observed mean streamflow (6.4 m3 s-1). The 

other statistics where not considered during calibration, but are shown here for quality assurance. 

Nevertheless, model performance exceeded the threshold of ‘very good’ at a yearly time step for 

all model performance statistics assessed (i.e. PBIAS, NSE, RSR, and R2). Thus, overall SWAT 
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model simulated streamflow was deemed well-suited for the general purpose of the current work 

which was to use SWAT to simulate long-term (i.e. annual time scale) flow and bacteria loading 

in LSW.  

There were limitations to model validation of bacteria loading in LSW including: 1) 

limited number of samples, 2) bacteria sampling was bias to low flows, and 3) maximum 

bacteria counts were unknown. While USGS collected monthly samples at Highway BB on Little 

Sac River at sub-basin 15, there were too few samples (n=60 monthly samples) to generate the 

long-term timeseries of total bacteria loading required for model calibration and validation. It has 

long been understood that estimates of average annual water quality loading generated from 

monthly samples can lead to greater than 50 % underestimations of the ‘true load’ when high 

flow events (e.g. peak flows) are not sampled (Letcher et al., 1999). Thus, the monthly samples 

that were available for assessment were bias to low flows. Additionally, observed bacteria counts 

greater than 8,000 cfu 100 ml-1 were reported as >8,000 cfu 100 ml-1, and therefore, peak (i.e. 

maximum) bacteria loading was not observed. Ultimately, the modeled bacteria data were 

expected to be closer to true loading than the observed data considering 1) the model output 

included a completed daily timeseries (n = 9,132 days), 2) the modeled data were not bias to low 

flows, and 3) the modeled maximum bacteria loads were not limited by an upper threshold 

testing limit of 8,000 cfu 100 ml-1 unlike the observed data. There were other data sets showing 

bacteria measured in LSW (Appendix A2), but differences in sampling period, sampling regimen 

(daily vs. weekly or monthly), and analysis methods (cfu 100 ml-1 vs. MPN 100 ml-1) 

complicated model performance assessment against those observed data as well. Nevertheless, 

model performance of bacteria was assessed by examining observed vs. simulated plots of water 
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quality data and expert judgment to dial in model calibration parameters in the region (e.g. 

Baffuat 2006; Baffaut and Benson, 2009; Baffaut and Sadeghi, 2010).  

In the current work, there was an average percent difference of 59 % between observed 

and simulated average annual E. coli counts. Results showed observed annual average E. coli 

counts ranged from 50 to 702 cfu 100 ml-1 with an average of 171 cfu 100 ml-1 at sub-basin 15, 

where simulated average annual E. coli counts ranged from 92 to 376 cfu 100 ml-1 with an 

average of 258 cfu 100 ml-1 (Figure 5). The trends in average annual E. coli counts between 

years were similar between observed and simulated data excepting during 2010 where a monthly 

sample captured bacteria during high flows that resulted in annual average bacteria load greater 

than 700 cfu 100 ml-1 (Figure 5).  

While not the primary focus of the current modeling effort, it was important to assess 

simulations of sediment, nitrogen, and phosphorous yields to ensure model calibration 

parameters resulted in physically realistic water quantity and quality estimates for the study 

catchment especially considering E. coli simulations are directly dependent on water and 

sediment transport. Figures 7 to 9 show the spatial variability in simulated average annual 

sediment and nutrient yields in LSW. The module SWAT-check (an analysis tool for 

highlighting problems with SWAT model output), did not indicate any model problems with 

hydrology, sediment, or phosphorous simulations in LSW. Simulated plant biomass yields were 

realistic for LSW indicating proper water and nitrogen yields. Ultimately, the SWAT model 

performance and assessment results showed the model was well-suited for the purpose of the 

current modeling effort.  

 

 



 
 

17 
 

3.3 BMP scenario modeling 

 The BMP E. coli reductions simulated, helped to target the most appropriate BMP(s) for 

reducing excessive E. coli loading in LSW (Figures 6 to 9, Appendix A1). Average percent 

reductions in E. coli ranged from 6 % (BMP scenario #3) to 34 % (BMP scenario #4) (Table 10). 

These results indicated that the urban 10 m VFS (BMP scenario #3) was associated with 

relatively little overall reductions in E. coli across all sub-basins. To be clear, the percent 

reductions presented are not reductions at the outlet of LSW. The percent reductions were an all-

sub-basin average. Thus, percent reductions of E. coli bacteria were at 6 % across all sub-basins, 

in part, due to the fact that BMP scenario #3 was only applied to urbanized sub-basins 21-24 in 

the southern area of LSW. While percent reductions associated with scenario #3 were 0 % for 

many sub-basins, percent reductions ranged from 16 to 44 % in the urbanized sub-basins 21-24 

where the urban 10 m VFS were applied (please see Table A1 in appendix). Thus, the resulting 

all sub-basin average percent reductions of bacteria in urban areas (BMP scenario #3) were about 

24 % lower compared to BMP reduction of bacteria in pasture areas (BMP scenario #2) because 

BMP scenario #2 was applied to all sub-basins, while BMP scenario #3 was only applied to 

urbanized sub-basins 21-24.  

Percent reductions from BMP scenario #3 were also influenced by spring flow 

contributions of E. coli in the southern urban area of LSW. For example, percent reductions of E. 

coli were lower in sub-basin 23 where spring flow contributions of E. coli were estimated as 467 

cfu 100 ml-1 compared to neighboring urbanized sub-basins 22 and 24 where spring flow 

contributions of E. coli were lesser (209 and 181 cfu 100 ml-1, respectively). These results point 

to a need to monitor and reduce E. coli from major spring sources in LSW as also noted by 

Baffaut (2006). 
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When all BMPs were simulated at once (BMP scenario #4), results showed a 34 % 

reduction of E. coli. Results showed a 15 m VFS in pasture areas (BMP scenario #2) alone 

accounted for most of the simulated percent reductions of E. coli. Thus, modeling results showed 

BMP scenario #2 was the best choice for management efforts designed to reduce E. coli loading 

in pasture areas of LSW. That is not to say BMP scenario #2 is necessarily the best 

socioeconomic choice for LSW as socioeconomic analyses were beyond the scope of the current 

modeling effort. 

In addition to E. coli reductions, it was important to highlight BMP reductions across 

multiple ecologically relevant state variables (e.g. streamflow, sediment, nutrients). Such 

variables have long been observed to influence E. coli fate and transport (Dwivedi et al., 2013). 

While BMP scenarios resulted in negligible water retention (stream flow reductions ranged from 

0 to 2 %), sediment and nutrient reductions were substantial. Percent reductions ranged from 0 to 

24 % (sediment), 2 to 15 % (TN), and 3 to 34 % (TP). Percent reductions associated with all 

BMPs (scenario #4) ranged from 15 % of TN to 34 % of TP. The simulated reduction of TN (15 

%) was less than half the reductions of TP (34 %) due to the fact that the BMPs applied did not 

trap water soluble nitrate well, and nitrate comprised much of TN. However, all BMPs (scenario 

#4) caused 55 % reduction in organic N. These results highlight 1) how BMPs can reduce 

sediments and nutrients in addition to E. coli, and 2) how future management efforts focused on 

reducing nitrate may require a different mitigation approach.  

It was important to acknowledge the estimated holistic water quality improvements 

associated with each BMP scenario assessed. For example, the greatest E. coli reductions (36.1 

%) simulated were associated with a 15 m vegetative buffer in pasture areas (i.e. BMP scenario 

#2) (Table 10), leaving little incentive for implementing all selected BMPs (i.e. BMP scenario 
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#4). However, results from BMP scenario #4 indicated a nearly two-fold reduction of organic 

nitrogen, and a third reduction of total phosphorous loading in addition to 34 % reductions of E. 

coli highlighting the potential benefits of a multi-faceted approach to nonpoint source pollution 

mitigation in LSW. Additionally, while simulations showed improved soil conservation practices 

(BMP scenario #1) may not be the best solution to reduce E. coli in LSW, soil conservation 

efforts may reduce E. coli via some combination of physical, chemical, and biological processes 

that watershed hydrologic simulation models, like SWAT, were not designed to simulate. 

Ultimately, expert judgment based on observed data should continue to be considered alongside 

results from computer simulation modeling results. 

 

Conclusions 

The purpose of this modeling effort was to use SWAT to simulate long-term natural (e.g. 

climate) and human (e.g. land use) impacts to flow and E. coli loading in LSW to support a 

broader watershed planning project being conducted by the WCO. The current work updated 

previous modeling efforts and BMP plans were evaluated using present watershed conditions. 

Results provide critically needed science-based information (i.e. data) to assist management and 

planning efforts focused on mitigating problems associated with excessive E. coli presence in 

LSW. 

Results from BMP scenario modeling evaluated percent reductions of E. coli from 

multiple BMPs including: 1) practices to improve soil health in pasture areas, 2) planting 

vegetative stream buffers in pasture areas, 3) planting vegetative stream buffers in urban areas, 

and 4) all aforementioned BMPs. While the greatest percent reductions of E. coli were associated 

with the all BMPs scenario, the greatest percent reduction of E. coli associated with a single 

BMP was BMP scenario #2 (VFS in pasture areas). Additionally, while percent reductions 
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associated with scenario #3 (VFS in urban areas) were 0 % for many sub-basins, percent 

reductions ranged from 16 to 44 % in the urbanized sub-basins 21-24 where the urban 10 m 

VFSs were applied. Soil conservation practices in pasture areas (BMP scenario #1) resulted in 

less percent reduction in E. coli in comparison to the other BMP scenarios; however, soil 

conservation practices remain an attractive choice for managers who need to conserve valuable 

soil and water resources. Ultimately, VFSs have been shown by other published works to capture 

excessive agricultural and urban surface runoff thereby mitigating water quality problems 

associated with increased pollutant delivery to streams. Thus, results from this modeling effort in 

combination with previous published works show the benefits of applying VFSs in combination 

with soil conservation practices to reduce E. coli loading in LSW.  

A lack of observed spring flow and bacteria data was a limitation in the current modeling 

effort. Future work should focus on obtaining continuous spring flow data and associated 

recharge areas in LSW. There is also a great need to monitor the water quality of the larger 

springs in the southern urbanized area of LSW. Additionally, there is need to quantify estimates 

of true water quality loadings (e.g. suspended sediment, nutrients, and bacteria) at the Morrisville 

USGS gage where flow has been continuously monitored for decades yet the true export of total 

pollutant loading remains unknown. Such monitoring efforts remain a rich avenue for future 

work with management implications for conserving water resources in LSW. Understanding 

source contributions (e.g. springs, point sources, nonpoint sources) of pollutants exported from 

the stream network of LSW is integral to securing valuable water resources in Stockton, Fellows, 

and McDaniel reservoirs. 
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Tables 

Table 1. Summary of SWAT input data and sources used in Little Sac Watershed, Missouri. 

Precipitation is precip. Air temp. is air temperature. Rh is relative humidity. Solar is solar 

radiation.  

Input data Description Source 

Topography 30 m raster Missouri Spatial Data Information Systems (MSDIS) 

Soils 30 m raster Soil Survey Geographic Database (SSURGO) 

Land use 30 m raster 2011 National Land Cover Data Set (NLCD) 

Precip. 4 km raster Parameter-elevation Regression on Independent Slopes Model 

(PRISM)  

Air temp. daily timeseries National Climatic Data Center  

Rh daily timeseries SWAT weather generator 

Solar  daily timeseries SWAT weather generator 

Wind speed daily timeseries SWAT weather generator 

 

Table 2. Summary of annual average effluent inputs from the Northwest Waste Water Treatment 

Plant to Little Sac River in Little Sac Watershed, Missouri. 

Year Flow TSS TKN TP NO3 E.coli 

 m3 day-1 Mg day-1 kg day-1 kg day-1 kg day-1 cfu 100ml-1 

2003 14,459 0.030 --- --- --- 44.1 

2004 15,443 0.032 --- --- --- 44.1 

2005 14,383 0.026 --- --- --- 44.1 

2006 14,610 0.028 --- --- --- 44.1 

2007 15,291 0.024 35.6 59.1 154.1 44.1 

2008 23,997 0.050 84.7 66.9 186.1 44.1 

2009 21,196 0.051 56.1 45.3 154.6 44.1 

2010 19,985 0.032 36.0 23.0 55.3 44.1 

2011 18,774 0.039 42.2 16.5 46.9 44.1 

2012 15,405 0.029 31.1 21.7 55.3 44.1 

2013 21,234 0.049 40.5 21.9 105.1 44.1 

2014 17,562 0.033 26.2 29.0 76.2 44.1 

2015 22,067 0.075 41.0 10.8 72.8 44.1 
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Table 3. Flow rates and bacteria loadings associated with select springs in urbanized sub-basins 

of Little Sac Watershed, Missouri. Escherichia coli is E. coli. 

Sub-basin  Spring name Flow N P E. coli 

  ft3 s-1 mg l-1 mg l-1 cfu 100ml-1 

12 HEADLEE #2 0.1 1.02 0.22 209 

 HEADLEE #1 0.1 --- --- --- 

 AUNT MAGGIE 0.05 --- --- --- 

15 MALENOSKY SPRING 0.1 1.02 0.22 209 

 UNNAMED SPRING 0.0446 --- --- --- 

 UNNAMED SPRING 0.0223 --- --- --- 

 UNNAMED SPRING 0.0033 --- --- --- 

16 HAMMOND SPRING 0.2266 1.02 0.22 209 

 ASHER CAVE SPRING 0.1114 --- --- --- 

 UNNAMED SPRING 0.0891 --- --- --- 

 CAVE SPRING 0.08 --- --- --- 

 BIRD EYE SPRING 0.0334 --- --- --- 

17 FLINTHILL CAVE  0.2228 1.02 0.22 209 

 FLINT HILL NORTH SPR 0.2005 --- --- --- 

 LOWER FLINT HILL  0.0557 --- --- --- 

19 CRYSTAL CAVE  0.6907 1.02 0.22 209 

 RHOADES SPRING 0.2228 --- --- --- 

 SOUTH 0.1003 --- --- --- 

 STAFFORD SPRING 0.0446 --- --- --- 

 SECTION 18 SPRING 0.0445 --- --- --- 

 SECTION 19 SPRING 0.0445 --- --- --- 

 NORTH 0.0401 --- --- --- 

20 WILLIAMS SPRING 1.25 1.0 1.6 114 

 PARRISH SPRING 0.35 --- --- --- 

 WEILAND SPRING 0.05 --- --- --- 

 STODDARD SPRING 0.02 --- --- --- 

21 RITTER SPRING (EAST) 3.44 1.2 0.18 201 

 RITTER SPRING (WEST) 1.324 --- --- --- 

 RITTER PARK SPRING 0.1 --- --- --- 

22 GREEN LAWN NORTH  0.156 1.1 3.7 209 

 UPWELLING SPRING 0.1337 --- --- --- 

 GREEN LAWN SOUTH  0.0334 --- --- --- 

23 DICKERSON PARK  14.3 1.2 0.13 467 

 FULBRIGHT SPRING 3.35 --- --- --- 

24 VALLEY WATER MILL  1.34 0.6 0.2 181 
*E. coli count were sourced from Adopt-A-Spring data collected in Little Sac Watershed during the study period. 
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Table 4. Average net monthly withdraws from Fellows Lake and McDaniel Lake located in 

Little Sac Watershed, Missouri. 
 

Net monthly withdraws 

(104 m3 day-1)  
Month Fellows Lake  McDaniel Lake 

January 0.9  0.7 

February -0.6  1.8 

March 1.6  1.7 

April 2.4  2.4 

May 1.8  3.4 

June 4.2  1.9 

July 5.9  3.3 

August 5.6  2.1 

September 2.5  -0.2 

October 3.1  2.4 

November 1.8  1.6 

December 1.2  0.1 

 

Table 5. Management operations in Little Sac Watershed, Missouri. 

Land use Operation Year 1 Year 2 

Pasture 1 Fertilization 55 kg ha-1of 17-17-17 on 03/05 55 kg ha-1of 17-17-17 on 03/12  
Grazing Turned out 03/26 for 51 days Turned out 05/16 for 61 days   

Turned out 07/16 for 62 days  Turned out 11/01 for 45 days  

Pasture 2 Fertilization 55 kg ha-1of 17-17-17 on 03/20 55 kg ha-1of 17-17-17 on 03/14  
Grazing Turned out 05/16 for 61 days Turned out 03/26 for 51 days   

Turned out 11/01 for 45 days  Turned out 07/16 for 62 days  

Hay field Fertilization 55 kg ha-1of 17-17-17 on 03/15 ---  
Harvest One harvest per year on 06/10 ---  
Grazing Turned out 09/16 for 46 days  --- 

Overwinter Grazing  Turned out 12/16 for 100 days --- 

Urban Fertilization 12.24 kg ha-1 of P on 03/05 ---   
31.75 kg ha-1 of N on 03/05   

Mowing 31 harvests across the growing 

season each year at a 50% 

harvest efficiency  

--- 

 
Street 

sweeping 

Bi-monthly --- 
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Table 6. Model efficiency ratings used to assess SWAT model performance of stream flow, 

sediment and nutrients at a monthly time step. Table recreated from Moriasi et al. (2007). 

Rating NSE PBIAS% RSR 

Very good x ≥ 0.75 |x| < 10 x ≤ 0.50 

Good 0.65 ≤ x < 0.75 10 ≤ |x| < 15 0.50 < x ≤ 0.60 

Satisfactory 0.50 ≤ x < 0.65 15 ≤ |x| < 25 0.60 < x ≤ 0.70 

Unsatisfactory x < 0.50 |x| ≥ 25 x > 0.70 

 

Table 7. Modeling scenarios used to test the effects of best management practices (BMPs) on 

SWAT simulated bacteria loading in Little Sac Watershed, Missouri.  

Scenario Brief description Area applied 

1 BMP to conserve soil health in pasture areas Pasture 

2 A 15 m vegetative buffer in pasture areas Pasture 

3 A 10 m vegetative buffer in urban areas Urban 

4 All BMPs included Pasture and Urban 

 

Table 8. Summary of statistics show hydroclimate during the study period (1991 to 2015) in 

Little Sac Watershed, Missouri. Average statistics are shown in parenthesis. Streamflow was 

sensed by a USGS flow monitoring gage located at sub-basin 7, near Morrisville, Missouri. 

Statistic Precipitation (mm) Air temperature (°C) Streamflow (m3 s-1) 

Minimum 869 -23.3 0.085 

Median 1,130 (1,150) 13.7 (13.7) 2.10 (6.40) 

Maximum 1620 42.2 592 

 

Table 9. Model performance results for SWAT simulated streamflow in Little Sac Watershed, 

Missouri. Percent bias is PBIAS, Nash-Sutcliffe efficiency is NSE, ratio of root mean square 

error to the standard deviation of observed data is RSR, and coefficient of determination is R2. 

Timestep Calibration (1991-2009)  Validation (2010-2015) 
 PBIAS NSE RSR R2  PBIAS NSE RSR R2 

Yearly 2.7 0.89 0.34 0.93  -9.8 0.87 0.36 0.93 

Monthly 2.7 0.55 0.67 0.79  -9.8 0.43 0.76 0.75 

Daily 2.7 0.20 0.90 0.63  -9.8 -0.04 1.0 0.76 

 

Table 10. Percent reductions of Escherichia coli (E. coli) from Best Management Practice 

(BMP) scenarios in Little Sac Watershed, Missouri.  

BMP 

scenario Streamflow Sediment 

Total 

nitrogen 

Total 

phosphorus E. coli 

1 1 2 2 3 7 

2 1 15 12 21 30 

3 0 0 3 12 6 

4 2 24 15 34 34 

 

 



 
 

27 
 

Figures 

 

 
Figure 1. Schematic describing each component of the water budget for land under row crop 

agriculture, pasture management, forest management, and developed urban areas. SWt is final 

soil water content, SWo is the initial soil water content, R is precipitation, Qsurf is surface runoff, 

wseep is water entering the vadose zone, and Qgw is ground water flow. This figure was recreated 

from (Neitsch et al. 2005).
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 Figure 2. General pathways of water movement in SWAT (sourced from Nietch et al., 2005).
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Figure 3. Schematic showing input data and general work flow of SWAT 

(source:geo.arc.nasa.gov). 
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Figure 4. Watershed study design comprised of 24 sub-basins located in Little Sac watershed, 

Missouri, USA. 
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Figure 5. Simulated vs. observed annual average streamflow (top) and E. coli (bottom) during 

the study in Little Sac Watershed, Missouri. The vertical dashed line separates calibration and 

validation periods. 
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Figure 6. Simulated annual average daily Escherichia coli (E. coli) export during the study in 

Little Sac Watershed, Missouri. 
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Figure 7. Simulated annual average sediment yield during the study in Little Sac Watershed, 

Missouri.  
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Figure 8. Simulated annual average total phosphorus (P) yield during the study in Little Sac 

Watershed, Missouri.  
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Figure 9. Simulated annual average total nitrogen (N) yield during the study in Little Sac 

Watershed, Missouri. 
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Appendix 

 

A1. Simulated baseline annual average Escherichia coli (E. coli) export and percent reductions 

associated with four Best Management Practice scenarios at 24 sub-basins located in Little Sac 

Watershed, Missouri. 

Sub-basin Baseline E. coli Scenario #1 Scenario #2 Scenario #3 Scenario #4 

# cfu 100 ml-1 % reduction % reduction % reduction % reduction 

1 821 12 47 0 70 

2 443 10 47 0 6 

3 372 8 38 9 40 

4 501 11 51 0 49 

5 340 11 39 10 44 

6 1,083 2 62 0 22 

7 271 6 28 10 36 

8 262 6 30 12 34 

9 362 7 23 0 40 

10 295 8 55 0 56 

11 351 7 27 0 32 

12 332 6 26 0 28 

13 368 11 16 0 45 

14 628 11 43 0 45 

15 281 9 37 15 43 

16 507 7 9 0 42 

17 618 12 57 0 39 

18 91 8 53 0 51 

19 97 6 49 0 35 

20 331 4 28 16 40 

21 380 5 21 26 17 

22 514 2 12 20 30 

23 600 0 0 16 23 

24 733 3 21 44 43 
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A2. Observed Escherichia coli (E. coli) data collected at various stream sites in Little Sac Watershed, Missouri. 

SWAT 

ID 
Site ID Watershed Stream 

River 

km 

Drainage 

Area (km2) 
Location County Latitude Longitude 

7 M_1 Headwaters Little Sac River Little Sac River 11.2 609.2 Little Sac River- State Hwy 215 Polk 37.48297 -93.48513 

8 WCO_12 Headwaters Little Sac River Little Sac River 21.3 485.4 Little Sac River- 111th Rd Polk 37.44875 -93.43458 

9 AC_06 Headwaters Little Sac River Asher Creek 1.7 91.9 East 560th Street Polk 37.43720 -93.46505 

10 WG_05 Headwaters Little Sac River Walnut Grove Tributary 0.5 25.4 Farm Road 4 Greene 37.42023 -93.47814 

11 WCO_11 Headwaters Little Sac River North Dry Sac 0.6 134.3 North Dry Sac River- 555th Rd Polk 37.44117 -93.39087 

12 WCO_7 Headwaters Little Sac River North Dry Sac 13.6 30.6 North Dry Sac River- FR 163 Greene 37.40367 -93.29194 

13 WCO_9 Headwaters Little Sac River King Branch 1.9 18.2 King Branch-State Hwy CC Greene 37.39499 -93.32279 

14 WCO_8 Headwaters Little Sac River Sims Branch 1.7 26.3 Sims Branch- State Hwy CC Greene 37.39473 -93.31285 

15 WCO_17 Headwaters Little Sac River Unnamed Tributary 0.4 6.7 Tributary of Little Sac River-N FR 115 Greene 37.41744 -93.39207 

16 AC_04 Headwaters Little Sac River Asher Creek 6.6 55.7 State Hwy BB Greene 37.40776 -93.46254 

17 WCO_16 Headwaters Little Sac River Flint Hill Branch 1.8 30.0 Flint Hill Branch- FR 117 Greene 37.3577833 -93.38025 

18 LSR024 Headwaters Little Sac River Little Sac River 76.7 18.6 Site 1B Greene 37.31038 -93.17302 

19 LSR119 Headwaters Little Sac River Little Sac River 59.43 103.7 Site 3 Greene 37.291833 -93.323817 

20 M_3 Headwaters Little Sac River Little Sac River 43.4 241.0 Little Sac River-FR 54 Greene 37.34452 -93.39700 

21 WCO_15 Headwaters Little Sac River Spring Branch Creek 1.6 15.2 Spring Branch Creek-FR 94 Greene 37.27423 -93.33710 

22 SSR120 Headwaters Little Sac River South Dry Sac 0.2 78.8 Site 4 Greene 37.28555 -93.32457 

24 WCO_0 Headwaters Little Sac River South Dry Sac 9.7 4.6 
South Dry Sac Creek-Valley Water Mill 

Rd 
Greene 37.26602 -93.24907 
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SWAT 

ID 
Site ID 

Begin 

Date 

End 

Date 

Collecting 

Agency 
Units 

Sample 

Number 

Arth 

Mean 

Geo 

Mean 
Min 25% 50% 75% Max Sample Frequency 

7 M_1 3/23/2006 1/30/2008 WCO MPN/100 mL 13 127 57 7.5 37 51 84 980 Weekly and Monthly, mainly in spring 

and summer 

8 WCO_12 6/25/2003 1/30/2008 WCO MPN/100 mL 32 134 69 6.3 39 62 141 1,046 Weekly and Monthly, mainly in spring 

and summer 

9 AC_06 6/25/2003 10/31/2013 OEWRI/WCO MPN/100 mL 108 400 75 0.5 17 83 291 6,867 Weekly from April-October, Monthly 

November-March 

10 WG_05 5/3/2012 10/31/2013 OEWRI MPN/100 mL 58 1,084 566 7.0 296 649 2,420 2,420 Weekly from April-October, Monthly 

November-March 

11 WCO_11 6/25/2003 1/30/2008 WCO MPN/100 mL 30 102 60 7.4 30 57 130 677 Weekly and Monthly, mainly in spring 

and summer 

12 WCO_7 6/25/2003 9/21/2005 WCO MPN/100 mL 20 471 139 41 68 92 193 4,611 Weekly and Monthly, mainly in spring 

and summer 

13 WCO_9 6/25/2003 9/21/2005 WCO MPN/100 mL 20 733 365 1.0 290 466 758 4,611 Weekly and Monthly, mainly in spring 

and summer 

14 WCO_8 6/25/2003 9/21/2005 WCO MPN/100 mL 19 208 62 1.0 37 74 106 2,247 Weekly and Monthly, mainly in spring 

and summer 

15 WCO_17 6/14/2003 6/9/2005 WCO MPN/100 mL 10 530 366 30 244 508 645 1,334 Weekly and Monthly, mainly in spring 

and summer 

16 AC_04 2/7/2006 10/31/2013 OEWRI/WCO MPN/100 mL 78 424 168 7.5 69 164 360 2,420 Weekly from April-October, Monthly 

November-March 

17 WCO_16 6/25/2003 1/30/2008 WCO MPN/100 mL 34 493 127 10 39 109 288 4,884 Weekly and Monthly, mainly in spring 

and summer 

18 LSR024 6/3/2014 9/25/2014 CU MPN/100 mL 10 1,268 129 17 43 86 122 10,462 Weekly May-September and Monthly 

October-March 

19 LSR119 6/25/2003 8/24/2016 CU/WCO MPN/100 mL 74 710 62 0.1 27 56 182 24,200 Weekly May-September and Monthly 

October-March 

20 M_3 2/15/2006 1/30/2008 WCO MPN/100 mL 15 81 60 15 34 65 97 291 Weekly and Monthly, mainly in spring 

and summer 

21 WCO_15 6/25/2003 1/30/2008 WCO MPN/100 mL 35 315 171 30 76 185 284 2,240 Weekly and Monthly, mainly in spring 

and summer 

22 SSR120 6/25/2003 8/24/2016 CU/WCO MPN/100 mL 100 751 148 0.5 52 112 321 15,531 Weekly May-September and Monthly 

October-March 

24 WCO_0 6/25/2003 1/30/2008 WCO MPN/100 mL 35 226 80 1.0 43 77 186 2,419 Weekly and Monthly, mainly in spring 

and summer 

 


